Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Infect Dis ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531688

RESUMO

BACKGROUND: GWAS have identified several non-functional tagSNPs associated with severe malaria. We hypothesized that causal SNPs could play a significant role in severe malaria by altering promoter or enhancer activity. Here, we sought to identify such regulatory SNPs. METHODS: SNPs in linkage disequilibrium with tagSNPs associated with severe malaria were identified and were further annotated using FUMA. Then, SNPs were prioritized using IW-scoring method to identify regulatory ones. Gene reporter assays were performed to assess the regulatory effect of a region containing candidates. The association between SNPs and severe malaria was assessed using logistic regression models in a Senegalese cohort. RESULTS: Among 418 SNPs, the best candidates were rs116525449 and rs79644959, which were in full disequilibrium between them, and located within the ARL14 promoter. Our gene reporter assay results revealed that the region containing the SNPs exhibited cell-specific promoter or enhancer activity, while the SNPs influenced promoter activity. We detected an association between severe malaria and those two SNPs using the overdominance model and we replicated the association of severe malaria with the tagSNP rs116423146. CONCLUSIONS: We suggest that these SNPs regulate ARL14 expression in immune cells and the presentation of antigens to T lymphocytes, thus influencing severe malaria development.

2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958695

RESUMO

Antibodies play a crucial role in activating protective immunity against malaria by interacting with Fc-gamma receptors (FcγRs). Genetic variations in genes encoding FcγRs can affect immune cell responses to the parasite. In this study, our aim was to investigate whether non-coding variants that regulate FcγR expression could influence the prevalence of Plasmodium falciparum infection. Through bioinformatics approaches, we selected expression quantitative trait loci (eQTL) for FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B genes encoding FcγRs (FCGR), in whole blood. We prioritized two regulatory variants, rs2099684 and rs1771575, located in open genomic regions. These variants were identified using RegVar, ImmuNexUT, and transcription factor annotations specific to immune cells. In addition to these, we genotyped the coding variants FCGR2A/rs1801274 and FCGR2B/rs1050501 in 234 individuals from a malaria-endemic area in Burkina Faso. We conducted age and family-based analyses to evaluate associations with the prevalence of malarial infection in both children and adults. The analysis revealed that the regulatory rs1771575-CC genotype was predicted to influence FCGR2B/FCGR2C/FCGR3A transcripts in immune cells and was the sole variant associated with a higher prevalence of malarial infection in children. In conclusion, this study identifies the rs1771575 cis-regulatory variant affecting several FcγRs in myeloid and neutrophil cells and associates it with the inter-individual capacity of children living in Burkina Faso to control malarial infection.


Assuntos
Malária Falciparum , Receptores de IgG , Adulto , Criança , Humanos , Burkina Faso/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Família Multigênica , Plasmodium falciparum/genética , Receptores de IgG/genética
4.
Diseases ; 11(3)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37489448

RESUMO

Decades ago, the treatment for acute myeloid leukemia relied on cytarabine and anthracycline. However, advancements in medical research have introduced targeted therapies, initially employing monoclonal antibodies such as ant-CD52 and anti-CD123, and subsequently utilizing specific inhibitors that target molecular mutations like anti-IDH1, IDH2, or FLT3. The challenge lies in determining the role of these therapeutic options, considering the inherent tumor heterogeneity associated with leukemia diagnosis and the clonal drift that this type of tumor can undergo. Targeted drugs necessitate an examination of various therapeutic targets at the individual cell level rather than assessing the entire population. It is crucial to differentiate between the prognostic value and therapeutic potential of a specific molecular target, depending on whether it is found in a terminally differentiated cell with limited proliferative potential or a stem cell with robust capabilities for both proliferation and self-renewal. However, this cell-by-cell analysis is accompanied by several challenges. Firstly, the scientific aspect poses difficulties in comparing different single cell analysis experiments despite efforts to standardize the results through various techniques. Secondly, there are practical obstacles as each individual cell experiment incurs significant financial costs and consumes a substantial amount of time. A viable solution lies in the ability to process multiple samples simultaneously, which is a distinctive feature of the cell hashing technique. In this study, we demonstrate the applicability of the cell hashing technique for analyzing acute myeloid leukemia cells. By comparing it to standard single cell analysis, we establish a strong correlation in various parameters such as quality control, gene expression, and the analysis of leukemic blast markers in patients. Consequently, this technique holds the potential to become an integral part of the biological assessment of acute myeloid leukemia, contributing to the personalized and optimized management of the disease, particularly in the context of employing targeted therapies.

5.
Malar J ; 22(1): 68, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849945

RESUMO

BACKGROUND: Genome-wide association studies have identified ATP2B4 as a severe malaria resistance gene. Recently, 8 potential causal regulatory variants have been shown to be associated with severe malaria. METHODS: Genotyping of rs10900585, rs11240734, rs1541252, rs1541253, rs1541254, rs1541255, rs10751450, rs10751451 and rs10751452 was performed in 154 unrelated individuals (79 controls and 75 mild malaria patients). rs10751450, rs10751451 and rs10751452 were genotyped by Taqman assays, whereas the fragment of the ATP2B4 gene containing the remaining SNPs was sequenced. Logistic regression analysis was used to assess the association between the SNPs and mild malaria. RESULTS: The results showed that mild malaria was associated with rs10900585, rs11240734, rs1541252, rs1541253, rs1541254, rs1541255, rs10751450, rs10751451 and rs10751452. The homozygous genotypes for the major alleles were associated with an increased risk of mild malaria. Furthermore, the haplotype containing the major alleles and that containing the minor alleles were the most frequent haplotypes. Individuals with the major haplotypes had a significantly higher risk of mild malaria compared to the carriers of the minor allele haplotype. CONCLUSIONS: ATP2B4 polymorphisms that have been associated with severe malaria are also associated with mild malaria.


Assuntos
Estudo de Associação Genômica Ampla , Malária , Humanos , Alelos , Genótipo , Polimorfismo de Nucleotídeo Único , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
6.
Diseases ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275564

RESUMO

INTRODUCTION: The application of single-cell RNA sequencing has greatly improved our understanding of various cellular and molecular mechanisms involved in physiological and pathophysiological processes. However, obtaining living cells for this technique can be difficult under certain conditions. To solve this problem, the methanol fixation method appeared as a promising alternative for routine clinical use. MATERIALS AND METHODS: In this study, we selected two AML samples that had been fixed in methanol for 12-18 months. Once the cells were rehydrated, these samples were subjected to single-cell RNA sequencing. We then compared the results obtained from these samples with those obtained from the same samples cryopreserved in DMSO. RESULTS: We used a previously validated methanol fixation protocol to perform scRNA-seq on DMSO cryopreserved cells and cells fixed in methanol for more than one year. Preliminary results show that methanol fixation induces some genetic and transcriptional modification compared with DMSO cryopreservation but remains a valuable method for single-cell analysis of primary human leukemia cells. CONCLUSIONS: The initial findings from this study highlight certain resemblances in methanol fixation over a 12-month period and cryopreservation with DMSO, along with associated transcriptional level modifications. However, we observed genetic degradation in the fixation condition when extending beyond one year. Despite certain study limitations, it is evident that short-term methanol fixation can be effectively used for leukemia blast samples. Its ease of implementation holds the potential to simplify the integration of this technique into routine clinical practice.

7.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563239

RESUMO

Genome-wide association studies for severe malaria (SM) have identified 30 genetic variants mostly located in non-coding regions. Here, we aimed to identify potential causal genetic variants located in these loci and demonstrate their functional activity. We systematically investigated the regulatory effect of the SNPs in linkage disequilibrium (LD) with the malaria-associated genetic variants. Annotating and prioritizing genetic variants led to the identification of a regulatory region containing five ATP2B4 SNPs in LD with rs10900585. We found significant associations between SM and rs10900585 and our candidate SNPs (rs11240734, rs1541252, rs1541253, rs1541254, and rs1541255) in a Senegalese population. Then, we demonstrated that both individual SNPs and the combination of SNPs had regulatory effects. Moreover, CRISPR/Cas9-mediated deletion of this region decreased ATP2B4 transcript and protein levels and increased Ca2+ intracellular concentration in the K562 cell line. Our data demonstrate that severe malaria-associated genetic variants alter the expression of ATP2B4 encoding a plasma membrane calcium-transporting ATPase 4 (PMCA4) expressed on red blood cells. Altering the activity of this regulatory element affects the risk of SM, likely through calcium concentration effect on parasitaemia.


Assuntos
Estudo de Associação Genômica Ampla , Malária , Predisposição Genética para Doença , Humanos , Malária/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico
8.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055007

RESUMO

Mortality due to sepsis remains unacceptably high, especially for septic shock patients. Murine models have been used to better understand pathophysiology mechanisms. However, the mouse model is still under debate. Herein we investigated the transcriptional response of mice injected with lipopolysaccharide (LPS) and compared it to either human cells stimulated in vitro with LPS or to the blood cells of septic patients. We identified a molecular signature composed of 2331 genes with an FDR median of 0%. This molecular signature is highly enriched in regulated genes in peritoneal macrophages stimulated with LPS. There is significant enrichment in several inflammatory signaling pathways, and in disease terms, such as pneumonia, sepsis, systemic inflammatory response syndrome, severe sepsis, an inflammatory disorder, immune suppression, and septic shock. A significant overlap between the genes upregulated in mouse and human cells stimulated with LPS has been demonstrated. Finally, genes upregulated in mouse cells stimulated with LPS are enriched in genes upregulated in human cells stimulated in vitro and in septic patients, who are at high risk of death. Our results support the hypothesis of common molecular and cellular mechanisms between mouse and human sepsis.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Sepse/etiologia , Transcrição Gênica , Animais , Biomarcadores , Biologia Computacional/métodos , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Sepse/diagnóstico , Sepse/metabolismo
9.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072601

RESUMO

The high mortality rate in septic shock patients is likely due to environmental and genetic factors, which influence the host response to infection. Two genome-wide association studies (GWAS) on 832 septic shock patients were performed. We used integrative bioinformatic approaches to annotate and prioritize the sepsis-associated single nucleotide polymorphisms (SNPs). An association of 139 SNPs with death based on a false discovery rate of 5% was detected. The most significant SNPs were within the CISH gene involved in cytokine regulation. Among the 139 SNPs associated with death and the 1311 SNPs in strong linkage disequilibrium with them, we investigated 1439 SNPs within non-coding regions to identify regulatory variants. The highest integrative weighted score (IW-score) was obtained for rs143356980, indicating that this SNP is a robust regulatory candidate. The rs143356980 region is located in a non-coding region close to the CISH gene. A CRISPR-Cas9-mediated deletion of this region and specific luciferase assays in K562 cells showed that rs143356980 modulates the enhancer activity in K562 cells. These analyses allowed us to identify several genes associated with death in patients with septic shock. They suggest that genetic variations in key genes, such as CISH, perturb relevant pathways, increasing the risk of death in sepsis patients.


Assuntos
Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Choque Séptico/etiologia , Choque Séptico/mortalidade , Proteínas Supressoras da Sinalização de Citocina/genética , Alelos , Biomarcadores , Biologia Computacional/métodos , Humanos , Interleucina-6/sangue , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Curva ROC , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes , Choque Séptico/metabolismo
10.
BMC Med Genomics ; 12(1): 148, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666081

RESUMO

BACKGROUND: Plasmodium falciparum malaria remains a major health problem in Africa. The mechanisms of pathogenesis are not fully understood. Transcriptomic studies may provide new insights into molecular pathways involved in the severe form of the disease. METHODS: Blood transcriptional levels were assessed in patients with cerebral malaria, non-cerebral malaria, or mild malaria by using microarray technology to look for gene expression profiles associated with clinical status. Multi-way ANOVA was used to extract differentially expressed genes. Network and pathways analyses were used to detect enrichment for biological pathways. RESULTS: We identified a set of 443 genes that were differentially expressed in the three patient groups after applying a false discovery rate of 10%. Since the cerebral patients displayed a particular transcriptional pattern, we focused our analysis on the differences between cerebral malaria patients and mild malaria patients. We further found 842 differentially expressed genes after applying a false discovery rate of 10%. Unsupervised hierarchical clustering of cerebral malaria-informative genes led to clustering of the cerebral malaria patients. The support vector machine method allowed us to correctly classify five out of six cerebral malaria patients and six of six mild malaria patients. Furthermore, the products of the differentially expressed genes were mapped onto a human protein-protein network. This led to the identification of the proteins with the highest number of interactions, including GSK3B, RELA, and APP. The enrichment analysis of the gene functional annotation indicates that genes involved in immune signalling pathways play a role in the occurrence of cerebral malaria. These include BCR-, TCR-, TLR-, cytokine-, FcεRI-, and FCGR- signalling pathways and natural killer cell cytotoxicity pathways, which are involved in the activation of immune cells. In addition, our results revealed an enrichment of genes involved in Alzheimer's disease. CONCLUSIONS: In the present study, we examine a set of genes whose expression differed in cerebral malaria patients and mild malaria patients. Moreover, our results provide new insights into the potential effect of the dysregulation of gene expression in immune pathways. Host genetic variation may partly explain such alteration of gene expression. Further studies are required to investigate this in African populations.


Assuntos
Malária Cerebral/patologia , Transcriptoma/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Lactente , Malária Cerebral/sangue , Malária Cerebral/genética , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas/genética , Senegal , Índice de Gravidade de Doença , Transdução de Sinais , Fator de Transcrição RelA/genética , Adulto Jovem
11.
Nucleic Acids Res ; 47(14): e79, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31045203

RESUMO

Genome-wide association studies (GWAS) associate single nucleotide polymorphisms (SNPs) to complex phenotypes. Most human SNPs fall in non-coding regions and are likely regulatory SNPs, but linkage disequilibrium (LD) blocks make it difficult to distinguish functional SNPs. Therefore, putative functional SNPs are usually annotated with molecular markers of gene regulatory regions and prioritized with dedicated prediction tools. We integrated associated SNPs, LD blocks and regulatory features into a supervised model called TAGOOS (TAG SNP bOOSting) and computed scores genome-wide. The TAGOOS scores enriched and prioritized unseen associated SNPs with an odds ratio of 4.3 and 3.5 and an area under the curve (AUC) of 0.65 and 0.6 for intronic and intergenic regions, respectively. The TAGOOS score was correlated with the maximal significance of associated SNPs and expression quantitative trait loci (eQTLs) and with the number of biological samples annotated for key regulatory features. Analysis of loci and regions associated to cleft lip and human adult height phenotypes recovered known functional loci and predicted new functional loci enriched in transcriptions factors related to the phenotypes. In conclusion, we trained a supervised model based on associated SNPs to prioritize putative functional regions. The TAGOOS scores, annotations and UCSC genome tracks are available here: https://tagoos.readthedocs.io.


Assuntos
Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Aprendizado de Máquina Supervisionado , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Internet , Desequilíbrio de Ligação , Fenótipo , Sequências Reguladoras de Ácido Nucleico/genética
12.
PeerJ ; 6: e6048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533319

RESUMO

BACKGROUND: Host factors, including host genetic variation, have been shown to influence the outcome of Plasmodium falciparum infection. Genome-wide linkage studies have mapped mild malaria resistance genes on chromosome 6p21, whereas NCR3-412 polymorphism (rs2736191) lying within this region was found to be associated with mild malaria. METHODS: Blood samples were taken from 188 Plasmodium falciparum malaria patients (76 mild malaria patients, 85 cerebral malaria patients, and 27 severe non-cerebral malaria patients). NCR3-412 (rs2736191) was analysed by sequencing, and haematological parameters were measured. Finally, their association with clinical phenotypes was assessed. RESULTS: We evidenced an association of thrombocytopenia with both cerebral malaria and severe non-cerebral malaria, and of an association of high leukocyte count with cerebral malaria. Additionally, we found no association of NCR3-412 with either cerebral malaria, severe non-cerebral malaria, or severe malaria after grouping cerebral malaria and severe non-cerebral malaria patients. CONCLUSIONS: Our results suggest that NCR3 genetic variation has no effect, or only a small effect on the occurrence of severe malaria, although it has been strongly associated with mild malaria. We discuss the biological meaning of these results. Besides, we confirmed the association of thrombocytopenia and high leukocyte count with severe malaria phenotypes.

14.
PLoS Genet ; 14(7): e1007502, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979676

RESUMO

Left ventricular non-compaction (LVNC) is a rare cardiomyopathy associated with a hypertrabeculated phenotype and a large spectrum of symptoms. It is still unclear whether LVNC results from a defect of ventricular trabeculae development and the mechanistic basis that underlies the varying severity of this pathology is unknown. To investigate these issues, we inactivated the cardiac transcription factor Nkx2-5 in trabecular myocardium at different stages of trabecular morphogenesis using an inducible Cx40-creERT2 allele. Conditional deletion of Nkx2-5 at embryonic stages, during trabecular formation, provokes a severe hypertrabeculated phenotype associated with subendocardial fibrosis and Purkinje fiber hypoplasia. A milder phenotype was observed after Nkx2-5 deletion at fetal stages, during trabecular compaction. A longitudinal study of cardiac function in adult Nkx2-5 conditional mutant mice demonstrates that excessive trabeculation is associated with complex ventricular conduction defects, progressively leading to strain defects, and, in 50% of mutant mice, to heart failure. Progressive impaired cardiac function correlates with conduction and strain defects independently of the degree of hypertrabeculation. Transcriptomic analysis of molecular pathways reflects myocardial remodeling with a larger number of differentially expressed genes in the severe versus mild phenotype and identifies Six1 as being upregulated in hypertrabeculated hearts. Our results provide insights into the etiology of LVNC and link its pathogenicity with compromised trabecular development including compaction defects and ventricular conduction system hypoplasia.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Insuficiência Cardíaca/genética , Ventrículos do Coração/embriologia , Proteína Homeobox Nkx-2.5/metabolismo , Miocárdio Ventricular não Compactado Isolado/genética , Morfogênese/genética , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Perfilação da Expressão Gênica , Ventrículos do Coração/patologia , Proteína Homeobox Nkx-2.5/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Miocárdio Ventricular não Compactado Isolado/complicações , Miocárdio Ventricular não Compactado Isolado/diagnóstico , Miocárdio Ventricular não Compactado Isolado/patologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Ramos Subendocárdicos/patologia , Deleção de Sequência , Índice de Gravidade de Doença , Regulação para Cima
15.
Exp Hematol ; 65: 49-56, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885947

RESUMO

Autologous hematopoietic stem cell transplantation is the standard treatment for multiple myeloma and relapsed or refractory lymphomas. After autologous hematopoietic stem cell transplantation, hematologic reconstitution and infectious complications are the two most critical issues. Although many patients develop infectious complications after therapeutic intensification, it remains impossible to predict infection for each individual. The goal of this work was to determine and identify a predictive transcriptomic signature of systemic inflammatory response syndrome and/or sepsis in patients receiving autologous hematopoietic stem cell transplantation. High-throughput transcriptomic and bioinformatics analysis were performed to analyze gene expression modulation in peripheral blood mononuclear cells in 21 patients undergoing autologous hematopoietic stem cell transplantation for hematological malignancies (lymphoma or multiple myeloma). Transcriptomic analysis of peripheral blood mononuclear cells samples collected just after conditioning regimen identified an 11-gene signature (CHAT, CNN3, ANKRD42, LOC100505725, EDAR, GPAT2, ENST00000390425, MTRM8, C6orf192, LOC10289230, and XLOC-005643) that was able to early predict (at least 2-7 days before its occurrence) the development of systemic inflammatory response syndrome or sepsis. The possibility of systemic inflammatory response syndrome or sepsis occurrence early prediction (2-7 days before occurrence) opens up new therapeutic strategies based on preemptive antibiotic and/or antifungal prophylaxis adapted to the specific risk profile of each patient.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sepse/diagnóstico , Transcriptoma/genética , Transplante Autólogo , Febre/complicações , Expressão Gênica , Testes Genéticos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Estudos Prospectivos , RNA/genética , Sepse/complicações , Transplante Autólogo/efeitos adversos
16.
Glycobiology ; 28(7): 534-541, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718295

RESUMO

The HS3ST3A1/B1 genes encode two homologous 3-O-sulfotransferases involved in the late modification step during heparan sulfate (HS) biosynthesis. In addition to the single nucleotide polymorphisms (SNPs) rs28470223 (C > T) in the promoter region of both HS3ST3A1 and rs62636623 (Gly/Arg) in the stem region of HS3ST3B1, three missense mutations (rs62056073, rs61729712 and rs9906590) located within the catalytic sulfotransferase domain of 3-OST-B1 are linked and associated to Plasmodium falciparum parasitaemia. To ascertain the functional effects of these SNP associations, we investigated the regulatory effect of rs28470223 and characterized the enzymatic activity of the missense SNP rs61729712 (Ser279Asn) localized at proximity of the substrate binding cleft. The SNP rs28470223 results in decreased promoter activity of HS3ST3A1 in K562 cells, suggesting a reduced in vivo transcription activity of the target gene. A comparative kinetic analysis of wt HS3ST3B1 and the Ser269Asn variant (rs61729712) using a HS-derived oligosaccharide substrate reveals a slightly higher catalytic activity for the SNP variant. These genetic and enzymatic studies suggest that genetic variations in enzymes responsible of HS 3-O-sulfation can modulate their promoter and enzymatic activities and may influence P. falciparum parasitaemia.


Assuntos
Parasitemia/genética , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Sulfotransferases/genética , Sítios de Ligação , Linhagem Celular Tumoral , Heparitina Sulfato/metabolismo , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Sulfotransferases/química , Sulfotransferases/metabolismo
17.
Sci Rep ; 7(1): 16222, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176735

RESUMO

In mammals, both sterile wounding and infection induce inflammation and activate the innate immune system, and the combination of both challenges may lead to severe health defects, revealing the importance of the balance between the intensity and resolution of the inflammatory response for the organism's fitness. Underlying mechanisms remain however elusive. Using Drosophila, we show that, upon infection with the entomopathogenic bacterium Pseudomonas entomophila (Pe), a sterile wounding induces a reduced resistance and increased host mortality. To identify the molecular mechanisms underlying the susceptibility of wounded flies to bacterial infection, we analyzed the very first steps of the process by comparing the transcriptome landscape of infected (simple hit flies, SH), wounded and infected (double hit flies, DH) and wounded (control) flies. We observed that overexpressed genes in DH flies compared to SH ones are significantly enriched in genes related to stress, including members of the JNK pathway. We demonstrated that the JNK pathway plays a central role in the DH phenotype by manipulating the Jra/dJun activity. Moreover, the CrebA/Creb3-like transcription factor (TF) and its targets were up-regulated in SH flies and we show that CrebA is required for mounting an appropriate immune response. Drosophila thus appears as a relevant model to investigate interactions between trauma and infection and allows to unravel key pathways involved.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , MAP Quinase Quinase 4/metabolismo , Infecções por Pseudomonas/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Drosophila melanogaster , Transdução de Sinais , Transcriptoma , Ferimentos e Lesões/microbiologia
18.
PLoS One ; 12(11): e0187818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121672

RESUMO

Linkage studies have revealed a linkage of mild malaria to chromosome 6p21 that contains the NCR3 gene encoding a natural killer cell receptor, whereas NCR3-412G>C (rs2736191) located in its promoter region was found to be associated with malaria in Burkina Faso. Here we confirmed the association of rs2736191 with mild malaria in a Congolese cohort and investigated its potential cis-regulatory effect. Luciferase assay results indicated that rs2736191-G allele had a significantly increased promoter activity compared to rs2736191-C allele. Furthermore, EMSAs demonstrated an altered binding of two nuclear protein complexes to the rs2736191-C allele in comparison to rs2736191-G allele. Finally, after in silico identification of transcription factor candidates, pull-down western blot experiments confirmed that both STAT4 and RUNX3 bind the region encompassing rs2736191 with a higher affinity for the G allele. To our knowledge, this is the first report that explored the functional role of rs2736191. These results support the hypothesis that genetic variation within natural killer cell receptors alters malaria resistance in humans.


Assuntos
Malária Falciparum/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Sítios de Ligação , Congo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Células K562 , Masculino , Fator de Transcrição STAT4/metabolismo
19.
Genom Data ; 4: 133-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26484198

RESUMO

Microarray is a powerful and cheap method to identify and quantify gene expression in particular in a mix of total RNA extracted from biological samples such as the tsetse fly gut, including several organisms (here, the fly tissue and the intestinal microorganisms). Besides, biostatistics and bioinformatics allow comparing the transcriptomes from samples collected from differently treated flies, and thus to identify and quantify differential expressed genes. Here, we describe in details a whole microarray transcriptome dataset produced from tsetse flies symbionts, Sodalis glossinidius and Wigglesworthia glossinidia. The tsetse fly midguts were sampled at key steps of tsetse fly infection by trypanosomes, 3-day and 10-day sampling times to target differentially expressed genes involved, respectively, in early events associated with trypanosome entry into the midgut and with the establishment of infection; 20 days to target the genes involved in events occurring later in the infection process. We describe in detail the methodology applied for analyzing the microarray data including differential expression as well as functional annotation of the identified symbiont genes. Both the microarray data and design are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48360;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48361;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55931.

20.
Am J Pathol ; 185(11): 3039-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343328

RESUMO

Tissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA). In mouse, we show that a reduction in serum PA predisposes to severe malaria, including cerebral malaria and severe anemia. Therefore, scoring pantetheinase in serum may serve as a severity marker in malaria infection. This disease triggers an acute stress in erythrocytes, which enhances cytoadherence and hemolysis. We speculated that serum pantetheinase might contribute to erythrocyte resistance to stress under homeostatic conditions. We show that mutant mice with a reduced serum PA are anemic and prone to phenylhydrazine-induced anemia. A cytofluorometric and spectroscopic analysis documented an increased frequency of erythrocytes with an autofluorescent aging phenotype. This is associated with an enhanced oxidative stress and shear stress-induced hemolysis. Red blood cell transfer and bone marrow chimera experiments show that the aging phenotype is not cell intrinsic but conferred by the environment, leading to a shortening of red blood cell half-life. Therefore, serum pantetheinase level regulates erythrocyte life span and modulates the risk of developing complicated malaria.


Assuntos
Amidoidrolases/sangue , Eritrócitos/fisiologia , Malária/fisiopatologia , Adolescente , Adulto , Amidoidrolases/metabolismo , Anemia , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Homeostase , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA